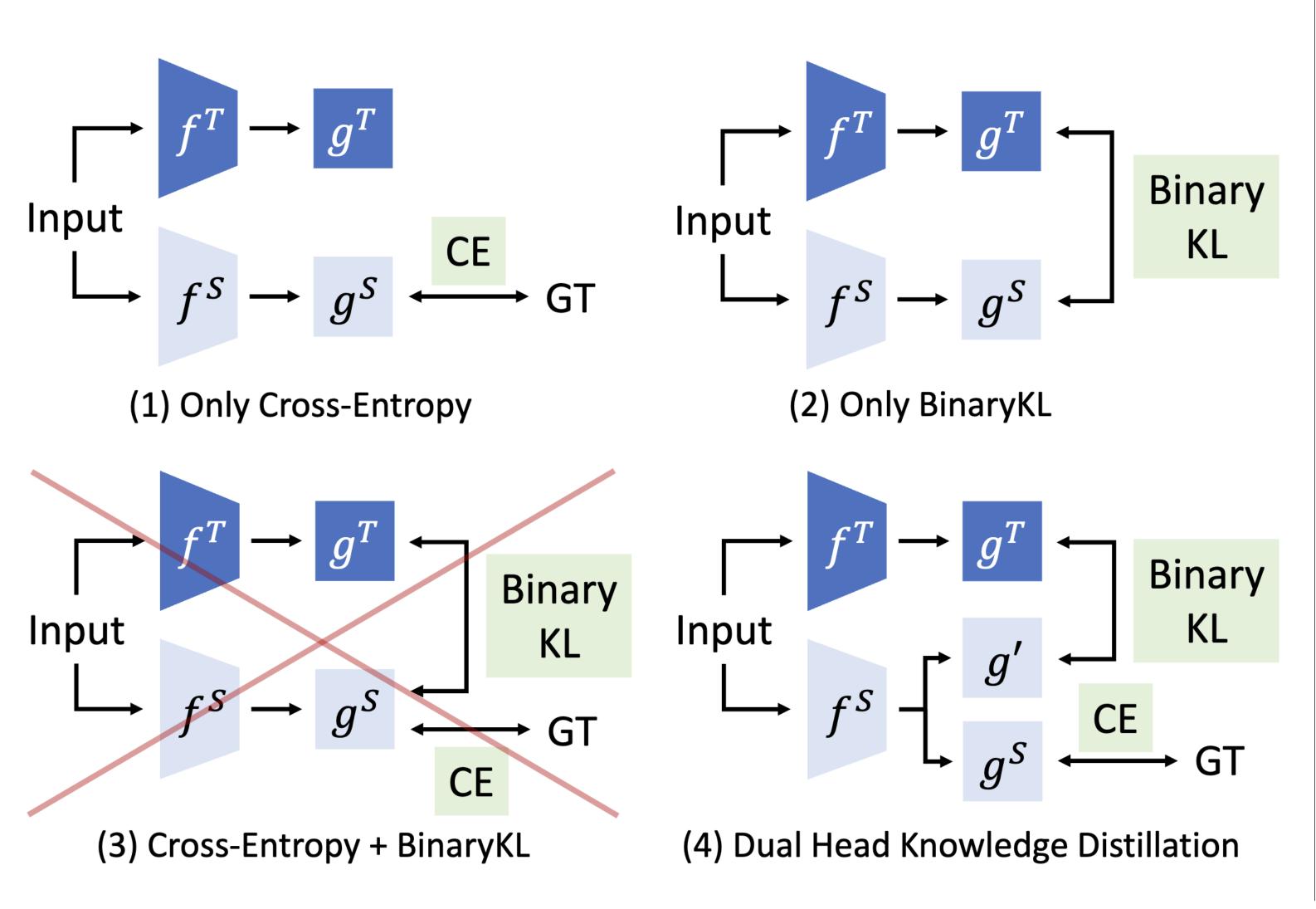


Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head

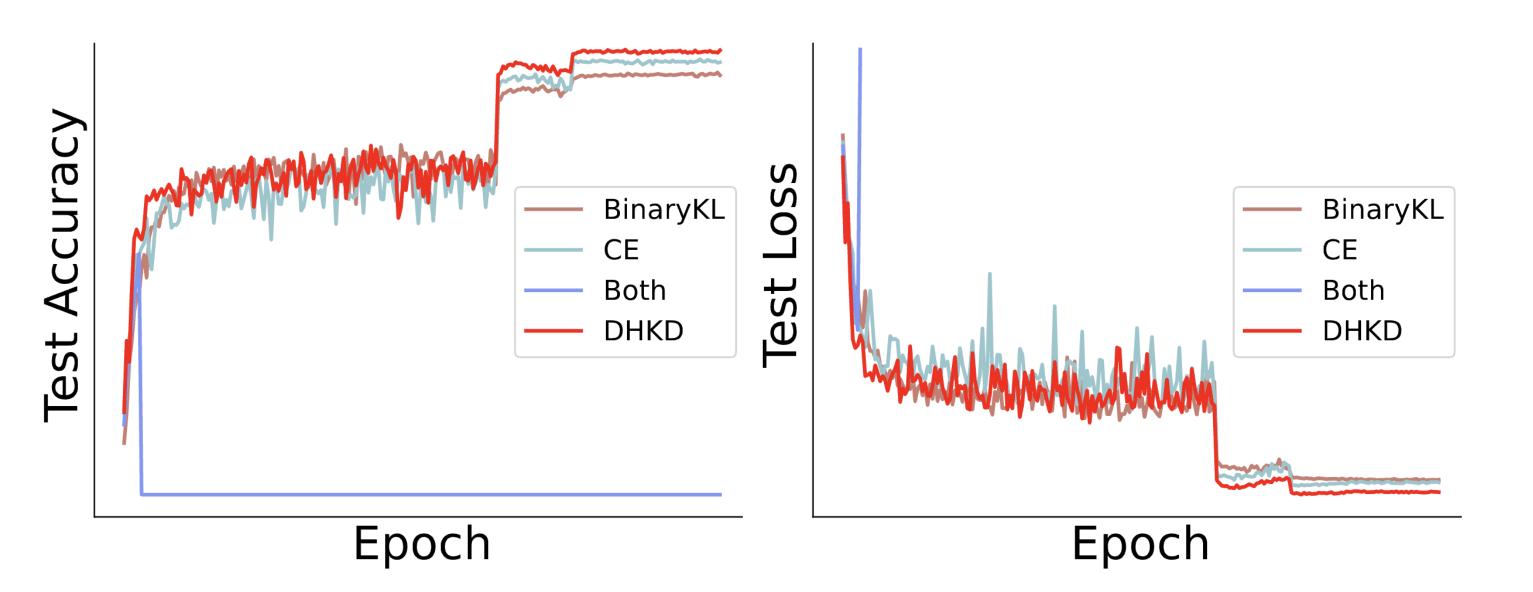
Penghui Yang, Chen-Chen Zong, Sheng-Jun Huang, Lei Feng, Bo An

The softmax function loses certain information Oct 10.09 Oct 10.

A solution:
Replace KL loss
with BinaryKL loss

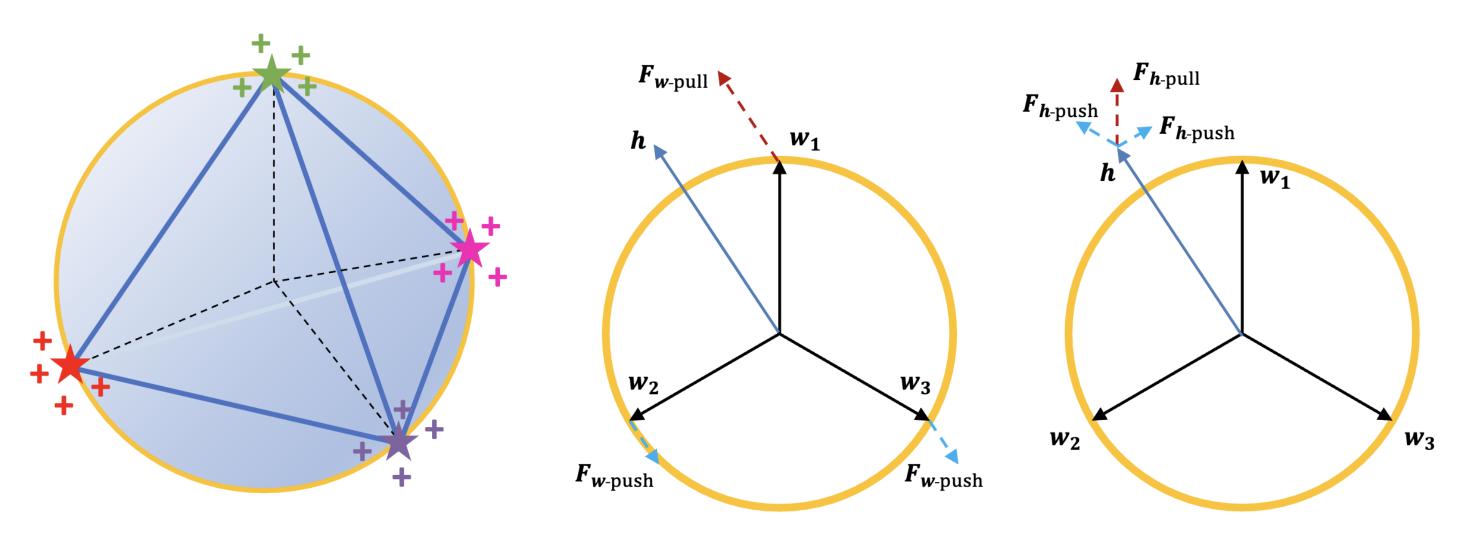

KL loss:

- For multi-class classification
- Use softmaxBinaryKL loss:
- Consider each class as a binary classification
- Use sigmoid, which is lossless


BinaryKL loss:

$$\mathcal{L}_{\text{BinaryKL}} = \tau^2 \sum_{i=1}^{B} \sum_{k=1}^{K} \mathcal{KL}\left(\left[\sigma\left(z_{i,k}^{\mathcal{T}}/\tau\right), 1 - \sigma\left(z_{i,k}^{\mathcal{T}}/\tau\right)\right] \| \left[\sigma\left(z_{i,k}^{\mathcal{S}}/\tau\right), 1 - \sigma\left(z_{i,k}^{\mathcal{S}}/\tau\right)\right]\right)$$

Incompatibility between CE and BinaryKL:



Q: What incompatibility? A: Training collapses.

Q: What causes incompatibility?

A: Gradient conflicts in the FC layer.

(a) A simplex equiangular tight frame (b) Gradient directions w.r.t. w (c) Gradient directions w.r.t. h

Proposition 1 The gradient of $\mathcal{L}_{overall}$ w.r.t. the linear classifier can be formulated as follows:

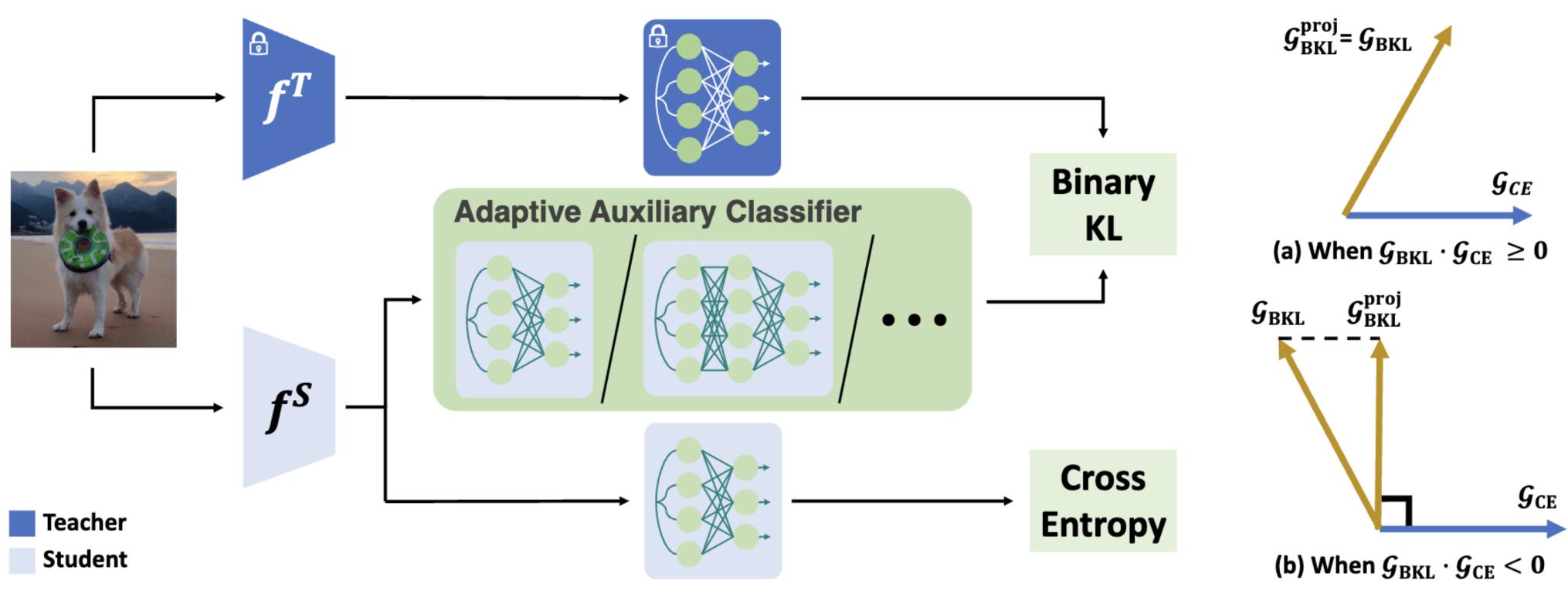
$$\frac{\partial \mathcal{L}_{\text{overall}}}{\partial \boldsymbol{w}_{k}} = -(\boldsymbol{F}_{\boldsymbol{w}\text{-pull}}^{\text{CE}} + \alpha \boldsymbol{F}_{\boldsymbol{w}\text{-pull}}^{\text{BinaryKL}}) - (\boldsymbol{F}_{\boldsymbol{w}\text{-push}}^{\text{CE}} + \alpha \boldsymbol{F}_{\boldsymbol{w}\text{-push}}^{\text{BinaryKL}}),$$

where

$$\begin{aligned} & \boldsymbol{F}_{\boldsymbol{w}\text{-pull}}^{\text{CE}} = \sum\nolimits_{i=1}^{n_k} (1 - p_k(\boldsymbol{h}_{k,i}^{\mathcal{S}})) \boldsymbol{h}_{k,i}^{\mathcal{S}}, \boldsymbol{F}_{\boldsymbol{w}\text{-pull}}^{\text{BinaryKL}} = \tau \sum\nolimits_{i=1}^{n_k} (q_k(\boldsymbol{h}_{k,i}^{\mathcal{T}}) - q_k(\boldsymbol{h}_{k,i}^{\mathcal{S}})) \boldsymbol{h}_{k,i}^{\mathcal{S}}, \\ & \boldsymbol{F}_{\boldsymbol{w}\text{-push}}^{\text{CE}} = -\sum\limits_{k' \neq k}^{K} \sum\limits_{j=1}^{n_{k'}} p_k(\boldsymbol{h}_{k',i}^{\mathcal{S}}) \boldsymbol{h}_{k',j}^{\mathcal{S}}, \boldsymbol{F}_{\boldsymbol{w}\text{-push}}^{\text{BinaryKL}} = -\tau \sum\limits_{k' \neq k}^{K} \sum\limits_{j=1}^{n_{k'}} (q_k(\boldsymbol{h}_{k,i}^{\mathcal{S}}) - q_k(\boldsymbol{h}_{k,i}^{\mathcal{T}})) \boldsymbol{h}_{k',j}^{\mathcal{S}}. \end{aligned}$$

BinaryKL may obstruct near classifier's learning process.

Proposition 2 The gradient of $\mathcal{L}_{overall}$ w.r.t. the features can be formulated as follows:

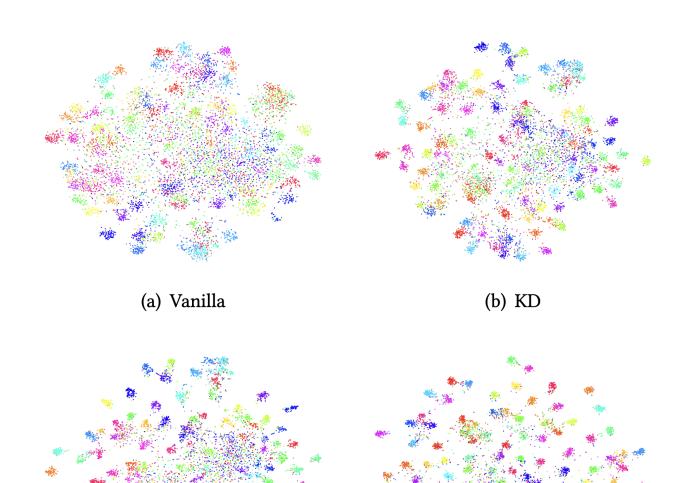

$$rac{\partial \mathcal{L}_{ ext{overall}}}{\partial m{h}} = -(m{F}_{m{h} ext{-pull}}^{ ext{CE}} + lpha m{F}_{m{h} ext{-pull}}^{ ext{BinaryKL}}) - (m{F}_{m{h} ext{-push}}^{ ext{CE}} + lpha m{F}_{m{h} ext{-push}}^{ ext{BinaryKL}}),$$

where

$$egin{aligned} oldsymbol{F_{h ext{-pull}}^{ ext{CE}}} &= (1 - p_c(oldsymbol{h}^{\mathcal{S}}))oldsymbol{w}_c^{\mathcal{S}}, & oldsymbol{F_{h ext{-pull}}^{ ext{BinaryKL}}} &= au(q_c(oldsymbol{h}^{\mathcal{T}}) - q_c(oldsymbol{h}^{\mathcal{S}}))oldsymbol{w}_c^{\mathcal{S}}, \ oldsymbol{F_{h ext{-push}}^{ ext{BinaryKL}}} &= - au\sum_{k
eq c}^K (q_k(oldsymbol{h}^{\mathcal{S}}) - q_k(oldsymbol{h}^{\mathcal{T}}))oldsymbol{w}_c^{\mathcal{S}}, \end{aligned}$$

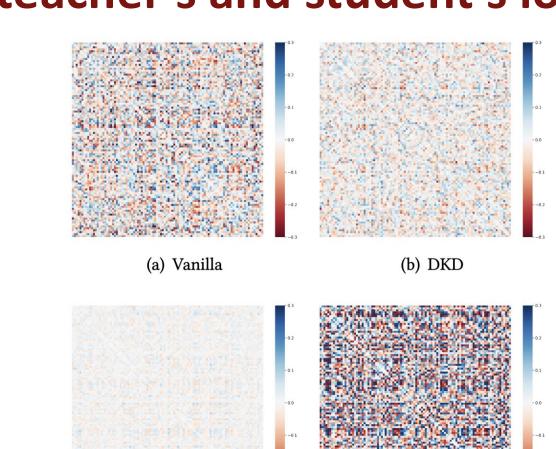
BinaryKL loss provides more detailed information about the teacher model when training the backbone.

Dual-Head Knowledge Distillation


Results on CIFAR-100

Teacher		resnet56 72.34	resnet110 74.31	resnet32×4 79.42	WRN-40-2 75.61	WRN-40-2 75.61	VGG13 74.64	Teacher		resnet32×4 79.42	WRN-40-2 75.61	VGG13 74.64	ResNet-50 79.34	resnet32×4 79.42	
	Student	resnet20 69.06	resnet32 71.14	resnet8×4 72.50	WRN-16-2 73.26	WRN-40-1 71.98	VGG8 70.36	Student		ShuffleNet-V1 70.50	ShuffleNet-V1 70.50	MBN-V2 64.60	MBN-V2 64.60	ShuffleNet-V2 71.82	
	FitNet	69.21	71.06	73.50	73.58	72.24	71.02		FitNet	73.59	73.73	64.14	63.16	73.54	
	RKD	69.61	71.82	71.90	73.35	72.22	71.48		RKD	72.28	72.21	64.52	64.43	73.21	
res	CRD	71.16	73.48	75.51	75.48	74.14	73.94	res	CRD	75.11	76.05	69.73	69.11	75.65	
atu	OFD	70.98	73.23	74.95	75.24	74.33	73.95	featu	OFD	75.98	75.85	69.48	69.04	76.82	
featı	ReviewKD	71.89	73.89	75.63	76.12	75.09	74.84		ReviewKD	77.45	77.14	70.37^*	69.89	77.78	
	SimKD	71.02	73.89	78.04^{*}	75.48	75.21	74.83		SimKD	77.18	77.23	69.45 71.12		78.39	
	CAT-KD	71.62	73.62	76.91	75.60	74.82	74.65		CAT-KD	78.26*	77.35*	69.13	71.36*	78.41^{*}	
S	KD	70.66	73.08	73.33	74.92	73.54	72.98		KD	74.07	74.83	67.37	67.35	74.45	
logits	DKD	71.97*	74.11 *	76.32	76.24	74.81	74.68	logits	DKD	76.45	76.70	69.71	70.35	77.07	
I	DHKD	71.19	73.92	76.54	76.36 *	75.25^*	74.84 *		DHKD	76.78	77.25	70.09	71.08	77.99	
DHKD + ReviewKD		73.14	75.21	78.29	77.97	76.56	76.27	DHKD + ReviewKD		78.35	78.22	71.01	71.51	78.83	

Results on ImageNet


	distillation manner			features							logits			
T: ResNet-34	Metric	Teacher	Student	AT	OFD	CRD	ReviewKD	SimKD	CAT-KD	KD	DKD	DIST	DHKD	
S: ResNet-18	top-1 top-5	73.31 91.42	69.75 89.07	70.69 90.01	70.81 89.98	71.17 90.13	71.61 90.51	71.59 90.48	71.26 90.45	70.66 89.88	71.70 90.41	72.07 90.42	72.15 90.89	
	dist	tillation ma	nner				features				lo	gits		
T: ResNet-50	Metric	Teacher	Student	AT	OFD	CRD	ReviewKD	SimKD	CAT-KD	KD	DKD	DIST	DHKI	
S: MobileNet	top-1	76.16	68.87	69.56	71.25	71.37	72.56	72.25	72.24	68.58	72.05	73.24	72.99	

t-SNE Visualization

(d) Teacher

The difference between the correlation matrices of the teacher's and student's logits

Acknowledgement

This research is supported by the Nation al Research Foundation, Singapore under its Industry Alignment Fund — Prepositio ning (IAF-PP) Funding Initiative. Any opini ons, findings and conclusions or recomm endations expressed in this material are t hose of the author(s) and do not reflect t he views of National Research Foundatio n, Singapore. This research is also supported by the Joint NTU-WeBank Research C entre on Fintech, Nanyang Technological University, Singapore. Sheng-Jun Huang i s supported by the NSFC(U2441285, 622 22605).