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Multi-Label Knowledge Distillation
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Why can’t we extend existing KD methods to MLKD?
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Traditional KD MLKD

Logits-based 
methods

The sum of predicted 
probabilities = 1, so we 
can use KL divergence.

The sum of predicted 
probabilities ≠ 1, so we 

cannot use KL divergence.

Feature-based 
methods 

Only one object in a image, 
which makes the semantic 
information in the feature 

map very clear

Multiple semantics in one 
image, which makes the 

semantic information in the 
feature map unclear
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Our proposed L2D framework

Class/Instance-aware Label-wise Embedding Distillation

Class-aware
label-wise distillation
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Take                  as an example. Take class car as an example.

Instance-aware label-wise distillation Class-aware label-wise distillation
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Visualization of Attention Maps

Distilling Inter-class Correlations
Vanilla MLDReviewKD L2D
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Performance on Image Retrieval
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Performance on MS-COCO

Performance on VOC

Performance on NUS-WIDE Performance on Reversed KD

ResNet34 → ResNet101

Per-Class Performance on VOC
Comparison results of the comparing methods on VOC in terms of AP and mAP (%), where the backbones of teacher and student model are 
respectively ResNet-50 and ResNet-18. The best performance is highlighted in red, and second best performance is highlighted in blue.


